Game Design Document (GDD): Dude

1. Game Overview

Title: Dude

Genre: 2D Roguelike / Strategy

Platform: PC / WebGL (Unity)

Engine: Unity

Perspective: Top-down tile-based grid

Target Audience: Players who enjoy turn-based roguelikes and emotionally immersive

gameplay experiences.

Core ldea:

Dude is a turn-based roguelike game where players navigate procedurally generated dungeons
while managing food (energy), avoiding enemies, and reaching an exit. The core gameplay is
designed to evoke tension, anxiety, and satisfaction through deliberate pacing and resource

pressure.

2. Gameplay Mechanics

Core Loop:
e Player makes a move — loses 1 food point.
e Player can collect food/soda to replenish.
o After the player’s turn, enemies move.

e Player aims to find the exit to progress to the next level.



Player Actions:
e Move in 4 directions (WASD or Arrow Keys).
e Break destructible walls.

e Pick up food/soda.

Health Attributes:

e Fruit: +10
e Drink: +20
o Walk: -1

e Wall hit: -1 (to break a wall- total 5 hits)

e Enemy hit: -10, -20

Enemies:
e Move toward the player.
e Skip every other turn on early levels.

o Attack the player if adjacent and movement is blocked.

Win/Lose Conditions:
e Win: Reach the exit.

e Lose: Food reaches zero (starvation).



3. Level Design

e Procedurally generated 14x7 grid.
e Random wall, enemy, and food placement each level.
e Exit is always placed in the top-right corner.

e Increasing enemy count based on level difficulty.

Difficulty Curve Diagram:

Level 1

+1 Enemy

Level 2

+1 Wall
L ]

Level 3

+Less Food
]

Level 4

Enemies Move More

k J

Level 5

Tighter Resources

Level 6

Increased Enemy Count

LJ

Level 7+



4. Visual Style

Pixel art, minimalist and clear.
Dark-toned backgrounds with glowing pickups.

Basic tile-based environment with modular prefabs.

5. Audio Design

Movement, eating, and combat have randomized SFX.
Sound feedback enhances interactivity.

Death and victory signal game state.

6. Technical Architecture

Scripts:

GameManager.cs: Handles level flow, turns, and game over.
BoardManager.cs: Generates the map and places objects.
Player.cs: Manages input, movement, and interactions.
Enemy.cs: Handles enemy Al and turn-based behavior.
MovingObject.cs: Shared movement logic.

SoundManager.cs: Manages audio playback.



Code Flow Diagram:

Scene Loaded

l

GameManager.cs
InitGame + SetupScene

Player.cs
Move + Interact + Food

BoardManager.cs
Generate Map + Place

ltems — Check —
- o | ", -'“"-».,\

yd .'/ ! ¥ \
! i
|I Enemy.cs
| SoundManager.cs
! Move Toward Player / Reached Exit? Food <= 02

Play Feedback Sounds

\ Attack
:

N

A . II|
~ ] J

MovingObject.cs

Level C let
Collision + Movement Logic evel Lompiete

7. User Interface
e HUD shows food count.
e Level intro and game over overlays.

e Minimal Ul to keep focus on grid.

8. Development Roadmap
e Core prototype built using Unity tutorial.
e Affective pacing tested through procedural generation and balance.

e Future additions: audio layers, lighting, new enemy types, deeper narrative.

Game Over



9. Team

e Chinmay Kawale — Testing, Development, Reasearch, Game Design Support

e Adityaraj Singh — Game Design, Presentation Design, Reasearch, Testing



	1. Game Overview
	2. Gameplay Mechanics
	3. Level Design
	4. Visual Style
	5. Audio Design
	6. Technical Architecture
	7. User Interface
	8. Development Roadmap
	9. Team

